

This article was downloaded by:

On: 30 January 2011

Access details: Access Details: Free Access

Publisher *Taylor & Francis*

Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

Spectroscopy Letters

Publication details, including instructions for authors and subscription information:

<http://www.informaworld.com/smpp/title~content=t713597299>

Complete ^1H and ^{13}C NMR Chemical Shift Assignments for Some Pentacyclic Oxindole Alkaloids

H. Toure^a; A. Babadjamian^b; G. Balansard^a; R. Faure^b; P. J. Houghton^c

^a Laboratoire de Pharmacognosie, Faculté de Pharmacie, Cedex, France ^b ensSPICam, Université d'Aix-Marseille III, Marseille, Cedex, France ^c Chelsea Department of Pharmacy, King College London, University of London, London, SW, England

To cite this Article Toure, H. , Babadjamian, A. , Balansard, G. , Faure, R. and Houghton, P. J.(1992) 'Complete ^1H and ^{13}C NMR Chemical Shift Assignments for Some Pentacyclic Oxindole Alkaloids', *Spectroscopy Letters*, 25: 2, 293 – 300

To link to this Article: DOI: 10.1080/00387019208020694

URL: <http://dx.doi.org/10.1080/00387019208020694>

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: <http://www.informaworld.com/terms-and-conditions-of-access.pdf>

This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

COMPLETE ^1H AND ^{13}C NMR CHEMICAL SHIFT ASSIGNMENTS
FOR SOME
PENTACYCLIC OXINDOLE ALKALOIDS.

Key Words: Mitraphylline Isomitraphylline Speciophylline Pteropodine ^1H homonuclear correlation ^1H homonuclear J-resolved 2D NMR spectra ^1H and ^{13}C NMR chemical shifts.

H. TOURE†, A. BABADJAMIAN*††, G. BALANSARD† R. FAURE††
and P.J. HOUGHTON‡

(†) Laboratoire de Pharmacognosie, Faculté de Pharmacie, 27 Boulevard Jean Moulin, 13385 Marseille Cedex 5, France.

(††) ensSPICam, Université d'Aix- Marseille III, Avenue Escadrille Normandie-Niemen, 13397 Marseille Cedex 13, France.

(‡) Chelsea Department of Pharmacy, King College London, University of London, Mauresa Road, London SW 36 LX, England.

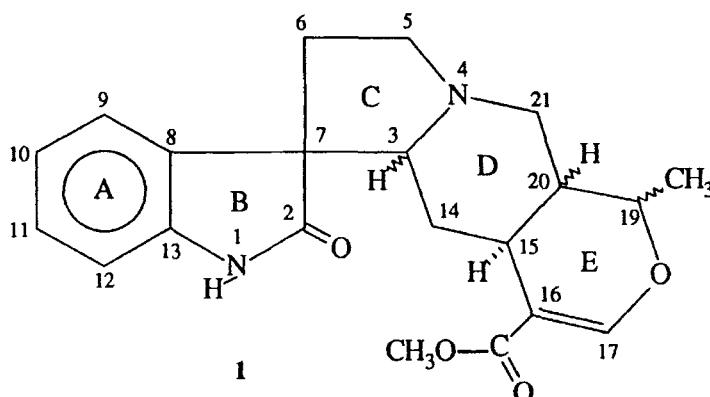
Abstract:

The complete analysis of the ^1H and ^{13}C NMR has been performed for four pentacyclic oxindole alkaloids: mitraphylline, isomitraphylline, speciophylline and pteropodine. The total assignment of the ^1H NMR parameters was achieved from combined evaluation of homonuclear shift correlation and J-resolved diagrams, while DEPT spectra and selective decoupling experiments provided all carbon chemical shifts.

* To whom correspondance should be addressed)

INTRODUCTION

As part of an investigation of the medicinal properties of natural products extracted from the leaves of *Mitragyna inermis* (willd.) O. Kuntze, a plant used in african folk medicine, we have isolated a mixture of four alkaloids which possess the pentacyclic oxindole skeleton. Comparison with previously reported physico-chemical data¹ indicated that these compounds were mitraphylline **1a**, isomitraphylline **1b**, speciophylline **1c** and pteropodine **1d** (figure 1).


We report in this paper the complete ¹H and ¹³C NMR assignment of the **1a**-**1d** compounds using two-dimensional NMR spectroscopic techniques.

RESULTS AND DISCUSSION

¹H NMR spectroscopy

¹H NMR spectral assignments for pentacyclic oxindole alkaloids **1a**-**1d** were deduced from the concerted application of autocorrelated²⁻⁴ and homonuclear J-resolved^{5, 6} two-dimensional NMR spectroscopy. Chemical shift information is provided by the 2D-J technique while the proton connectivity is easily available from the COSY diagram. The complete ¹H NMR spectrum analysis of mitraphylline **1a** illustrates this approach.

A convenient starting point for the interpretation and utilization of the COSY spectrum of **1a** is provided by the resonances which can be assigned with certainty from the one-dimensional ¹H spectrum: H-17, H-19 and the methyl protons. It is evident from the contour plot of the homonuclear shift correlation that the H-17 doublet presents correlated peaks with the proton resonating at 2.02 ppm (H-15) via a long range coupling, while H-19 correlates vicinally with H-20 which, in turn, is coupled with the methylenic protons H-21 α and H-21 β . The H-15 resonance is also coupled with the signal at 0.91 ppm which can be easily identified as H-14 β from its coupling pattern (q, J = 11.2 Hz). As a consequence, the H-14 α and H-3 chemical shifts were determined in a straightforward manner from their spin multiplicities extracted from the corresponding slices of the 2D-J spectrum.

compound	Alkaloid	Type	configuration of asymmetric centres			
			C-3 H	C-20 H	C-19 CH ₃	C-7 ^a
1a	Mitraphylline	normal	α	β	α	B
1b	Isomitraphylline	normal	α	β	α	A
1c	Speciophylline	epiallo	β	α	α	A
1d	Pteropodine	allo	α	α	α	B

^a A: lactam carbonyl group below the plane of C/D rings;

B: lactam carbonyl group above the plane of C/D rings.

FIGURE 1. Configurational terminology for oxindole alkaloids

Deshielding of H-5 β (and H-21 β) was supported by the examination of Dreiding models and the ¹H assignments of isopteropodine⁷. Although the protons of C ring form a complex spin system, their coupling connectivities can be easily established from the ¹H-¹H homonuclear correlation spectrum. Finally, additional support for these assignments was also provided by double resonance experiments.

A complete summary of the proton chemical shifts of **1a-1d** is presented in table 1. As stated by Yagudaev *et al*⁸, it can be seen from the table, that in **1c** (epiallo type) the signals in the 19-CH₃ and 1H protons appear in a stronger field than those of the corresponding protons in **1d** (allo type).

¹³C NMR spectroscopy

The complete ¹³C data are given in table 2. The limited quantities of material available precluded the use of the 2D-heteronuclear shift correlation. The ¹³C chemical shift assignments of **1a-1d** were, therefore, assigned a) by comparison with literature data of representative oxindole^{7, 9} or other alkaloid¹⁰ models, b) on the basis of their multiplicities in the DEPT¹² spectra and c) from selective decoupling experiments using previously reported ¹H chemical shifts for ¹³C ambiguous assignments: CH-3 and CH-19; CH₂-5 and CH₂-21. It should be point out that our attribution for the cited carbons, for pteropodine **1d** and for speciophylline **1c**, do not agree with the interpretation of Borges del Castillo *et al*¹³.

EXPERIMENTAL

Mitraphylline **1a**, isomitraphylline **1b**, speciophylline **1c** and pteropodine **1d** were isolated from the plant according to the operating process previously reported^{1, 11}. All NMR spectra were recorded with a multinuclear Bruker AM-200 spectrometer (Centre Interuniversitaire de RMN de Marseille). The NMR spectra were measured as solutions in CDCl₃ (DMSO-d₆ for **1a**) in 10mm and 5mm o.d. tubes for ¹³C and ¹H respectively. Tetramethylsilane was used as an internal standard in both measurements.

Resonance multiplicities for ¹³C were established via the acquisition of DEPT spectra obtained for proton pulses P_θ = 90° (CH only) and P_θ = 135° (CH and CH₃ differentiated from CH₂). For the DEPT sequence the width of ¹H 90° pulse was 29 μs, the width of a ¹³C 90° pulse was 13 μs and the (2J)⁻¹ delay was set equal to 3.7 ms.

TABLE 1. ^1H NMR chemical shifts of oxindole alkaloids **1a** - **1d** ^a

Atoms	$\delta^1\text{H}$			
	1a ^a	1b	1c	1d
1	10.17	8.99	9.15	9.15
3	2.33	2.65	2.18	2.47
5 α	3.16	3.32	3.39	3.36
5 β	2.18	2.41	2.45	2.35
6 α	1.89	2.06	2.05	1.99
6 β	2.45	2.56	2.45	2.40
9	7.28	7.38	7.16	7.21
10	6.99	6.97	7.18	7.18
11	7.18	7.18	7.02	7.03
12	6.81	6.91	6.94	6.90
14 α	2.12	2.23	2.21	1.74
14 β	0.91	0.66	1.63	1.53
15	2.02	2.19	2.86	2.36
17	7.42	7.40	7.39	7.49
19	4.46	4.39	4.21	4.55
20	1.76	1.90	2.05	1.60
21 α	1.81	1.95	2.12	2.40
21 β	3.08	3.16	3.12	3.35
OCH ₃	3.50	3.58	3.37	3.50
CH ₃	1.04	1.12	1.26	1.39

^a in ppm from TMS^b DMSO-d₆ as solvent

TABLE 2. ^{13}C NMR chemical shifts of oxindole alkaloids **1a** - **1d**^a

Atoms	1a ^a	1b	1c	1d
2	179.44	181.21	181.95	181.41
3	73.62	71.88	70.52	74.47
5	52.79	53.40	53.37	55.18
6	34.35	35.37	34.16	34.83
7	54.85	56.60	56.00	56.34
8	133.65	133.95	133.44	133.62
9	122.85	125.00	122.59	123.04
10	121.40	122.38	122.15	122.59
11	127.50	127.65	127.80	127.99
12	108.69	109.61	109.85	109.70
13	141.80	140.57	141.59	141.10
14	28.01	29.33	26.45	29.73
15	29.73	30.29	25.21	31.20
16	106.74	107.59	105.20	109.38
17	153.29	153.88	153.66	155.30
19	73.22	74.09	74.8	172.28
20	40.23	41.14	36.60	38.10
21	53.31	54.39	54.90	53.72
CO	165.94	167.06	167.47	167.73
OCH ₃	50.30	50.67	50.45	50.86
CH ₃	14.53	14.90	18.80	18.94

^a in ppm from TMS^b DMSO-d₆ as solvent

The homonuclear ^1H - ^1H shift correlated two-dimensional diagrams were obtained using the COSY-45 pulse sequence. The spectral widths were $F_2 = 2000\text{Hz}$ and $F_1 = \pm 1000\text{ Hz}$, allowing a digital resolution of 1.95 Hz. The spectra were collected as 2048×1024 blocks of data, and were processed using sinusoidal multiplication in each dimension followed by symmetrization of the final data matrix. Other parameters were as follows: number of increments in t_1 , 512; scans, 32; phase cycling, 16; and relaxation delay, 2s.

The basic pulse sequence was used for the two-dimensional homonuclear proton J-resolved diagram. The F_2 spectral width was 2000 Hz and F_1 was $\pm 62\text{ Hz}$. A 16 phase cycling, with 16 scans and 64 increments, followed by zero filling and weighting with sine bell functions in both directions, providing a digital resolution of 1.95 Hz in F_2 and 0.97 Hz in F_1 ; the recycle delay was 2s.

References

1. J. D. Phillipson and S. R. Hemingway, *J. Chromatogr.*, **105**, 163 (1975).
2. W.P. Aue, E. Bartholdi and R.R. Ernst, *J. Chem. Phys.*, **64**, 2229 (1976).
3. K. Nagayama, A. Kumar, K. Wüthrich and R.R. Ernst, *J. Magn. Reson.*, **40**, 321 (1980).
4. R. Freeman, G.A. Morris and A. Bax, *J. Magn. Reson.*, **42**, 164 (1981).
5. W.P. Aue, J. Karhan and R.R. Ernst, *J. Chem. Phys.*, **64**, 4226 (1976).
6. K. Nagayama, K. Wüthrich, P. Bachman and R.R. Ernst, *Biochem. Biophys. Res. comm.*, **78**, 99 (1977).
7. G. E. Martin, R. Sanduja and M. Alam, *J. Nat. Prod.*, **49**, 406 (1986).
8. M. R. Yagudaev and S. Y. Yunusov, *Khim. Prir. Soedin.*, (3), 345 (1976).
9. E. Wenkert, J. S. Bindra, C. J. Chang, D. W. Cochran and F. M. Schell, *Acc. Chem. Research*, **7**, 46 (1974).
10. E. Wenkert, C. J. Chang, H.P.S. Chawla, D. W. Cochran, E.W. Hagaman, J.C. King and K. Orito, *J. Am. Chem. Soc.*, **98**, 3645 (1976).
11. D. M. Doddrell, D.T. Pegg and M. R. Bendall, *J. Magn. Reson.*, **48**, 323 (1982).

12. E. S. Shellard and K. Sarpong, *J. Pharm. Pharmacol.*, **21**, suppl. 1138 (1969).
13. J. Borges del Castillo, M. T. Manresa ferrero, J.L. Martin Ramon, F. Rodriguez Luis, P. Vazquez Bueno and P. Joseph-Nathan, *An. Quim., Ser. C*, **78** (1), 126, 1982.

Date Received: 10/03/91
Date Accepted: 11/06/91